

LBA66: Afatinib versus chemotherapy for treatment-naïve non-small cell lung cancer with a sensitizing uncommon epidermal growth factor receptor mutation: a phase III study (ACHILLES/TORG1834)

Satoru Miura¹, Hiroshi Tanaka¹, Toshihiro Misumi², Hiroshige Yoshioka³, Takayasu Kurata³, Takaaki Tokito⁴, Tatsuro Fukuhara⁵, Yuki Sato⁶, Yoshimasa Shiraishi⁷, Seiichiro Kusuhara⁸, Shunsuke Teraoka⁹, Terufumi Kato¹⁰, Hidehito Horinouchi¹¹, Yuichi Takiguchi¹², Yasuhiro Goto¹³, Kentaro Tanaka⁷, Masaki Kanazu¹⁴, Satoshi Ikeda¹⁵, Eiki Ichihara¹⁶, and Hiroaki Okamoto¹⁷

Department of Internal Medicine, Niligata Cancer Center Hospital, Niligata, Japan; Department of Biostatistics, Yokohama City University School of Medicine, Kanagawa, Japan; Department of Thoracic Oncology, Kanagawa, Japan; Department of Respiratory Medicine, Kurume University School of Medicine, Fukuoka, Japan; Department of Respiratory Medicine, Miyagi, Cancer Center, Miyagi, Japan; Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Hyogo, Japan; Department of Respiratory Medicine, Kranagawa, Japan; Department of Pulmonary Medicine and Medical Oncology, Wakayama Medical University Hospital, Wakayama, Japan; Department of Pulmonary Medicine and Medical Oncology, Wakayama Medical University Hospital, Cology, Kanagawa Cancer Center, Kanagawa, Japan; Department of Thoracic Oncology, National Cancer Center Hospital Tokyo, Japan; Department of Medical Oncology, Chiba University Hospital, Chiba, Japan; Department of Respiratory Medicine, Fujita Health University School of Medicine, Aichi, Japan; Department of Respiratory Medicine, Respiratory Medicine,

DECLARATION OF INTERESTS

Presenter: Satoru Miura, Niigata Cancer Center Hospital

Honoraria: Chugai Pharmaceutical, Taiho Pharmaceutical, Pfizer, Eli Lilly, Boehringer-Ingelheim Japan Ono Pharmaceutical, AstraZeneca, Novartis, MSD, Bristol-Myers Squibb, Kyowa Hakko Kirin,

Daiichi Sankyo, Nippon Kayaku, AMGEN, Merck, Takeda Pharmaceutical

Uncommon/Compound EGFR mutations

- The development of gene detection methods has revealed the diversity of EGFR mutations.
- We classified uncommon/compound EGFR mutations without Exon 20 insertion and denovo T790M mutation as "sensitizing uncommon mutations".

Harrison PT et al. Semin Cancer Biol. 2020;61:167

Rationale

- EGFR-tyrosine kinase inhibitor (TKI) based therapy has been the standard treatment for patients with common EGFR-positive non-small cell lung cancer (NSCLC) patients.
- No randomized phase III study has been conducted in patients with "sensitizing uncommon mutations".
- There is no conclusion on whether EGFR-TKI is the optimal initial treatment for this population.
- Afatinib has a broad-range antitumor activity for various *EGFR* mutations.
- Post-hoc combined analysis (LUX-Lung 2, 3, and 6) and retrospective studies have demonstrated promising activities for this population 1-3).
- Here, we report the first result of the randomized phase III study, ACHILLES/TORG1834 study, comparing afatinib and chemotherapy, in sensitizing uncommon EGFR mutant NSCLC.
 - Yang et al. Lancet Oncol. 2015;16:830.
 - Popat et al. Oncologist. 2022; 27(4): 255-26
 - 3) Yang et al. Front Oncol. 2022; 12: 834704

Study design ~ACHILLES/TORG1834~

Key inclusion criteria

Locally advanced/metastatic Non-Sq NSCLC
≥20 years
ECOG performance status 0 / 1
Sensitizing uncommon mutation*
No prior systemic anticancer /EGFR-TKI therapy
Stable CNS metastases allowed

* Uncommon/Compound EGFR mutations without exon 20 insertions and de-novo T790M mutations

- ** Cisplatin 75 mg/m² or carboplatin (AUC 5 or 6) and pemetrexed (500 mg/m²), followed by pemetrexed maintenance therapy every 3 weeks.
- *** A 30 mg dose of afatinib could be selected for elderly/frail patients as a starting dose before randomization

Primary endpoint: Progression free survival (PFS) assessed by investigators

The sample size of 106 was based on 75% power to detect a hazard ratio of 0.6 in PFS with α = 0.05.

The interim analysis regarding PFS was pre-planned upon completion of enrollment.

The analysis adjusted for multiple testing with the Lan-DeMets alpha-spending function, using the O'Brien and Fleming metho

Secondary endpoint:

Safety, Objective response rate (ORR), Disease control rate (DCR), Overall survival (OS), Time to Treatment Failure (TTF)

Miura et al. 2023 ESMO. Abstract LBA66

Patient Disposition

^{*} Patients for whom an initial efficacy evaluation (6 weeks) was not performed at the cut-off date.

ITT: Intention-to-Treat SAS: Safety analysis set PPS: Per-protocol set

Demographics and Baseline Characteristics

Characteristics			fatinib n=73)	Platinum Doublet (n=36)		
Age	Median (range)	71.0	(49-83)	66.5	(42-77)	
	≥ 75 years old	19	(26.0%)	5	(13.9%)	
Gender	Male	32	(43.8%)	16	(44.4%)	
	Female	41	(56.2%)	20	(55.6%)	
ECOG performance status	0	32 41	(43.8%) (56.2%)	16 20	(44.4%) (55.6%)	
Smoking status	Never	38	(52.1%)	13	(36.2%)	
	Current	8	(11.0%)	6	(16.7%)	
	Former	27	(37.0%)	17	(47.2%)	
Stage*	III/IV	55	(75.3%)	29	(80.6%)	
	Recurrence	18	(24.7%)	7	(19.4%)	
EGFR mutation status*	Single	50	(68.5%)	25	(69.4%)	
	Compound	23	(31.5%)	11	(30.6%)	
CNS metastasis*	No	50	(68.5%)	25	(69.4%)	
	Yes	23	(31.5%)	11	(30.6%)	
Afatinib starting dose*	30 mg	37	(50.7%)	19	(52.8%)	
	40 mg	36	(49.3%)	17	(47.2%)	

Miura et al. 2023 ESMO. Abstract LBA66* Stratification factor

Primary endpoint: Progression-Free Survival

Miura et al. 2023 ESMO. Abstract LBA66
Satoru Miura MD, PhD LBA66, ESMO2023

PFS across subgroup analysis

Antitumor activity in efficacy evaluable patients

	Afatinib (n=70)	Platinum Doublet (n=34)		
Median treatment course, n (range)	10.0 (0–52)	7.0 (1–35)		
Response, n(%) CR PR SD PD NE	2 (2.9 %) 41 (58.5 %) 15 (21.4 %) 6 (11.4 %) 6 (11.4 %)	0 (0.0%) 16 (47.1%) 12 (35.3%) 4 (11.8%) 2 (5.9%)		
Objective response rate, n(%)	43 (61.4 %)	16 (47.1 %)		
95% Confidential Interval	(49.0–72.8)	(29.8–64.9)		
p-value	0.2069			
Disease control rate, n(%)	58 (82.9 %)	28 (82.4 %)		

Safety Summary

Adverse event	Afatinib (n=73)				Platinum Doublet (n=35)			
	All	(%)	Gr≥3	(%)	All	(%)	Gr≥3	(%)
All events	71	(97.3)	32	(43.8)	32	(91.4)	13	(37.1)
Diarrhea	60	(82.2)	16	(21.9)	4	(11.4)	0	(0)
Paronychia	43	(58.9)	5	(6.8)	0	(0)	0	(0)
Rash	41	(58.9)	1	(1.4)	1	(2.9)	0	(0)
Mucositis	40	(58.9)	6	(8.2)	3	(8.6)	0	(0)
Appetite loss	17	(23.3)	5	(6.8)	15	(42.9)	1	(2.9)
Nausea	17	(23.3)	3	(4.1)	12	(34.3)	3	(8.6)
Neutropenia	0	(0)	0	(0)	9	(25.7)	4	(11.5)
Anemia	4	(5.5)	2	(2.7)	9	(25.7)	3	(8.6)
Thrombocytopenia	0	(0)	0	(0)	6	(17.1)	5	(14.3)
Pneumonitis	2	(2.7)	1	(1.4)*	2	(5.7)	1	(2.9)

^{*} One treatment-related death due to pneumonitis occurred in the afatinib arm

Conclusion

- The ACHILLES/TORG1834 study is the first randomized phase III study comparing afatinib with platinum-doublet chemotherapy in patients with treatment-naïve non-squamous NSCLC with sensitizing uncommon EGFR mutations.
- Afatinib significantly improved progression-free survival over platinum doublet chemotherapy with a HR of 0.422 in the first-line treatment of this population, thus meeting the primary endpoint.
- The safety profile in the afatinib arm was consistent compared to previous reports, and no new safety signal was observed.
- The ACHILLES/TORG1834 study confirmed that afatinib is the standard treatment for patients with treatment-naïve non-squamous NSCLC with sensitizing uncommon EGFR mutations.
- Additional data with overall survival, response according to detailed mutation status, and postprogression treatment profiles will eventually be available.